
A Consensus Protocol for Decentralized Data
Delivery and Storage

Siddarth Banerjee
Kandola Network

sb@kandola.network

Narayanan Ramanathan
Kandola Network

nara@kandola.network

Ragul Kumar
Kandola Network

gul@kandola.network

Abstract—The biggest challenge faced in building decentralized
platforms for general purpose data delivery and storage is scale.
The platform needs to support very high throughput and support
low latency, while not compromising on the security and promises
of decentralization. PoRT protocol comprises a light weight data
transaction verification function, adopts cryptographic primitives
and game theoretic constructs in securing the protocol from
adaptive attacks and deploys subnets created from verifiable
randomness in data verification and decentralization storage.
Parallel chains, epoch driven leader identification for chains,
batch derivatives, two-way cryptographic sortition, dynamic sub-
nets for batch verification, static subnets for decentralized storage
are some of the key innovations made in building the protocol.
Guaranteeing safety and liveness being the core requirement
of any consensus protocol, PoRT protocol makes every attempt
within its purview to guarantee the two, with the assumption
of partial synchrony in network settings. A testnet platform
that runs PoRT protocol serving decentralized data delivery and
storage is currently under development and will soon be released.

Index Terms—Blockchain, decentralized storage, parallel
chains, cryptographic sortition,

I. INTRODUCTION AND MOTIVATION

The Web3 vision encompasses building a truly democratized
internet that is built on decentralized infrastructure and deci-
sion making, that empowers individuals by giving them greater
control over their data, identities and digital assets and imparts
full transparency and accountability to all aspects of service
rendering. Realization of such a vision involves developing
holistic protocols that simultaneously encompass decentralized
compute, decentralized storage and consensus gathering.

The impracticality behind on-chain data storage with state
machine replication across the entire network for general
purpose data has resulted in decentralized storage platforms
storing transaction hashes on chain and offloading the actual
payload to centralized platforms. Such solutions open the
doors to the same set of problems that are witnessed in cen-
tralized storage such as data censorship, lack of data privacy
and security breaches. Platforms built for fully decentralized
data storage and delivery can unlock the hidden potentials
behind decentralized data marketplaces and give rise to far
more decentralized data driven applications.

This paper introduces Proof of Real-time Transfer (PoRT),
a consensus protocol that facilitates the decentralized delivery
and storage of general purpose data. With data encryption at

source, end-point authentication, standardized (and yet cus-
tomizable) application-driven message schemas and decentral-
ized verification of data compliance, PoRT protocol guarantees
the security, privacy and integrity of schema-compliant data all
through its life-cycle on the platform.

The security guarantees of the protocol stem from crypto-
graphic primitives and game theoretic constructs that are de-
signed to defend the protocol from various Byzantine attacks.
To facilitate high throughput, the protocol dedicates subnets
that are identified using verifiable randomness to the tasks
of batch verification and data storage and thereby placing
implicit bounds on the network’s finite resources (compute,
memory, network bandwidth) that are dedicated for the tasks.
A significant proponent of the protocol’s high throughput is a
no-fork design that PoRT adopts. Through parallel chains that
are each dedicated for an application and deterministic leader
assignments per chain for preset epoch periods, PoRT achieves
deterministic finality. The design choices highlighted above
have been carefully made such that the trustless nature of the
decentralized platform powered by the proposed consensus is
upheld.

There are two key properties of the proposed protocol,
namely (a) Safety: The nodes of the network agree upon
the sequence of verified blocks. It is possible that at some
point in time, nodes do not have identical states to their
respective chains, but the chain maintained by the lagging node
is a subset of that maintained by the more current node (b)
Liveness: Newer valid transactions will continue to be added
to chain within a finite amount of time.

II. PRIOR ART

Designing decentralized consensus protocols has entailed
developing scalable, Byzantine Fault Tolerant protocols that
guarantee safety and liveness at all times, while keeping cen-
tralization at bay. Network timing assumptions play a critical
role in shaping of such protocols. HoneyBadger BFT [2],
HotStuff [1], and ICCP [3] are some of the popular consensus
protocols designed to achieve high security and performance
in distributed systems. While HoneyBadger BFT is suited
for asynchronous networks, HotStuff and ICCP are designed
for partially synchronous network settings. [4] proposes two
atomic broadcast protocols named Dumbo1 and Dumbo2 that
have asymptotically and practically better efficiency than Hon-
eyBadger BFT.979-8-3503-4647-3/23/$31.00 © 2023 IEEE

State Machine Replication in the presence of Byzantine
systems has generally entailed full replication of data across
the entire network, thereby offering no scaling efficiency.
While sharding solutions have been adopted for improved
scale, they have been susceptible to adaptive adversarial at-
tack. Free2Shard [5] proposes an adversary-resistant solution
architecture for sharding based consensus protocols. Instachain
[6] adopts stateless blockchain model in sharding and achieves
high scalability while preserving safety, but trading off liveness
momentarily.

Filecoin [11], Storj [13], Sia [14], Arweave [12] are some
of popularly received decentralized storage solutions. [10]
provides a very interesting overview on the state of popular
decentralized storage systems today and evaluates them taking
into consideration a set of important service requirements for
such systems.

III. PROOF OF REAL-TIME TRANSFER CONSENSUS

A. Formalism

We will begin with a handful of definitions, relevant no-
tations, introducing the cryptographic primitives that PoRT
adopts, ones that are referred to often across this paper.

1) Let N be a set of n nodes {N1, N2, ..., Nn}. Nodes can
be of type full-node or storage-node. A full-node runs
the consensus protocol and plays a role in decentralized
storage. The storage node plays a role only in the latter.

2) Let S = {s1, s2, ..., sn} correspond to the stakes of the
respective nodes, the amount of coins or tokens that each
node has invested as a collateral to participate in the
network.

3) Let the number of Byzantine nodes in the network be f .
PoRT protocol is designed for a composition of honest
nodes and Byzantine nodes under which n ≥ 3f + 1.

4) Let A be a set of a applications {A1, A2, ..., Aa}.
Applications are data producers and / or consumers of
data.

5) Let notation [x] denote the set {1, 2, ..., x}.
6) Let H be a collision resistant hash function (SHA256).
7) Let DSA KeyGen, DSA Sign and DSA Verify be the

digital signature algorithms for the generation of key
pairs, signing of messages and verification of signatures
respectively.

8) Nodes and applications (henceforth referred to as en-
tities) generate their own public-private key (pki, ski)
using KeyGen, where i ∈ [n + a]. Their decentralized
identity (DID) idi = H(pki).

9) Let R be the Bootstrap registry. Every entity registers
itself with R by submitting a DID document that com-
prises their public key(s), DID(s), service endpoints and
other DID related metadata.

10) Given a message m and Ni’s private key ski, signature
S is generated as S = DSA Sign(m, ski) and the
signature is verified as DSA Verify(S, pki).

11) Let Dx and Dh correspond to the XOR distance and
hamming distance functions respectively. Let a and b be

two binary strings. The XOR distance between them is
Dx(a, b) = a ⊕ b, where ⊕ is the XOR operator. The
hamming distance between them is Dh(a, b) = a ⊔ b,
where ⊔ is the hamming distance operator.

12) Let TS KeyGen be the distributed key generation func-
tion under the context of threshold signature. Let
DSA Sign and DSA Verify, from above, serve their
respective roles under the new context. Let t correspond
to the threshold value pertaining to the minimum number
of signatures required.

13) Verifiable Random Functions (VRF) are realized in
PoRT as follows: Given a public input x, a node Ni

generates a random number y = H(DSA Sign(x, ski))
and generates a proof π =DSA Sign(x, ski). y is a
number that only Ni gets to generate from x. If sup-
plied with (x, y, π), other nodes can corroborate that
y was derived from x using DSA Verify(x, y, pki) and
verifying if y = H(π).

14) Let P be a function that takes a 256 bit number r as
input and generates a number ŝ between (0, 1): ŝ =
P (r). Let r1, r2, ..., r32 be ordered set of bytes in r. A
byte s is generated from r : s = r1 ⊕ r2 ⊕ ...⊕ r32 and
is normalized as ŝ = s/256

15) Let Q be a function that takes three inputs: a 256 bit
number r, positive integers p and q and generates p
numbers in the range (0, q) by applying bitwise right
shift operation (the operator being >>). on r followed
by a modulo q. Q generates an array of positive numbers
{m1,m2, ...,mp} where mi = (r>>i) mod q, ∀i ∈ [p]

B. Decentralized Identity Management

Decentralized Identity (DID) is a globally unique, crypto-
graphically verifiable identifier that is resolvable with high
availability. DID provides a framework for auto authentication,
supports interoperability and enables entities to manage their
own identity and provides a framework for auto authentication.
PoRT furnishes the decentralized public key infrastructure
(DPKI) and other relevant DID SDKs that enable them to
create and manage their own decentralized identities.

The bootstrap registry R is maintained at an identity man-
agement blockchain (such as Sovrin, uPort) and a set of nodes
from the network are identified to serve as DID nodes serving
as the network’s liaisons for state maintenance of R and for
data retrieval. PoRT protocol identifies the DID nodes using
cryptographic sortition (the mechanics of which is explained
later). Per protocol, nodes can either connect with the DID
nodes or with their peers or correspond directly with the
external identity management blockchain in requesting DID
data and maintaining local repositories of the R.

C. Network Model

PoRT protocol adopts a scale-free, semi-structured, self-
organizing peer-to-peer (P2P) overlay network that is designed
for low propagation latency, efficiency in query-routing for
resource discovery and resource sharing, resilience to high

network churn, while being highly scalable and remaining free
from hierarchical organization. The topology of the proposed
network and the underlying mechanisms for data storage
and retrieval, both draw inspirations from constructs adopted
by structured and unstructured P2P overlay networks and
optimizations proposed for each (Kademlia [9], Perigee [8]).

1) Network Topology: In structured P2P overlay networks
[7], nodes and data objects are organized onto a keyspace,
as (key, value) pairs. Nodes identify their peers through a
notion of proximity based on their respective keys. Further,
there is a deterministic mapping between data objects and
nodes identified based on key proximity. The network adopts
Distributed Hash Tables (DHT) as a substrate that holds infor-
mation on data object location and facilitates efficient resource
sharing. Unstructured P2P overlay networks, on the other
hand, organize nodes in a flat or hierarchical random graphs.
Nodes identity their peers through randomized connectivity,
or through a mechanism that serves their mutual interests.
Protocols such as flooding, random walks and expanding-ring
time-to-live search are typically used for querying content.
While the former network’s key-based routing is scalable and
locates rare data items efficiently, the latter is better suited for
networks with high churn and locates highly replicated content
with much lesser overhead.

Let the proposed network be represented as an undirected
graph G = (V,E) with n nodes Ni ∈ V, i ∈ [n] , each
assigned a unique 256 bit identity idi (also the key) obtained
from hashing their respective public keys. The set of edges
eij ∈ E, where i ∈ [n], j ∈ [n], i ̸= j is set to 1 when node
Ni and Nj are connected and set to 0 otherwise. They are
organized into binary-tree with their positions identified with
the unique prefixes to their respective identities. Nodes connect
with a selected set of peers and maintain a routing table
facilitates query-routing and resource localization as illustrated
below.

• For each node, the tree is partitioned into successively
lower sub-trees based on binary prefixes of identities that
did not contain the node. Nodes look for at least one peer
from within each sub-tree.

• Distance between two nodes ni and nj is defined by the
XOR metric [9], d(ni, nj) = idi

⊕
idj . For each 0 ≤

m ≤ 255, a node looks towards maintaining a list of
nodes (called k−buckets) whose distance is in the range
(2m, 2m+1) from itself.

• In addition to keyspace proximity, nodes factor in net-
work heterogeneities and node configurations (geographic
distance, bandwidth, compute, memory) that directly im-
pact broadcast latency in identifying an optimal set of
peers [8].

• From within each sub-tree the k− bucket lists comprise
(node id, port number, IP address, latency, node up-time).
The lists within each bucket is sorted based on a weighted
combination of latency, node up-time and a recency of
interaction factors. Nodes that responded to a request
recently are weighed more.

PoRT protocol adopts the remote procedure calls namely,

{PING, STORE, FIND NODE, FIND VALUE} as defined in
Kademlia.

2) Communication assumptions: We assume partially syn-
chronous operational settings, whereby messages sent by hon-
est nodes will get delivered within a certain time δ after the
passage of an unknown global stabilization time. The proto-
col handles delays in message transmission by incorporating
timeouts and requests for re-transmissions. Time-out events
can induce nodes to temporarily update their respective k-
buckets until normal operational settings are observed. During
instances of unpredictability in network conditions, when time-
out events are unusually frequent, nodes resort to temporarily
updating their k-buckets until normal operational conditions
resume or establish new connections with peers using ran-
domized connectivity and adopt practices from unstructured
network settings for resource discovery.

Nodes communicate with one another generally through
direct port-based communications and resort to peer-to-peer
gossip sublayer for network wide dissemination of messages.
PoRT protocol adopts HTTP/3 QUIC protocol as the underly-
ing transport protocol.

D. Standardized Data Schema and Transaction Verification

A data transaction can correspond to any one of (a) transfer
of data between two or more applications (type: create or
update) (b) transfer of data to self (type: create) (c) data
query (type: read) (d) data deletion (type: delete). The services
requested can fall under one of three types: (a) delivery and
storage (b) storage only (c) data retrieval.

Let D be a set of standardized data schemas {d1, d2, ..., dk},
where each schema defines an application specific structure
of the data payload, delineating the fields that make up the
data header and body. For every di there exists a unique
URI ui that points to an entry in the bootstrap registry R.
While applications are free to adopt an existing data schema
or use their own customized data schema, the data fields and
formats identified for data conformity should be adhered to
for the platform to accept the transactions. Let (pkp, skp) and
(pkc, skc) be the key pairs of the producer and consumer
respectively. Let [h∥b] correspond to the two header and body
of the data transaction dt. The hash signature (dtsign) field
corresponds to the following: DSA Sign(H([h || DSA Sign(b,
pk c)]), sk p). Table I illustrates a sample data transaction that
adopts the standardized schema for IoT.

1) Data Transaction Verification Function: Let DT =
{dt1, dt2, ...dtk} be a set of data transactions. The data trans-
action verification function be V: DT → {0, 1}, with V (dt) =
1 for valid transactions and V (dt) = 0 otherwise. Source
authenticity, signature validity, data integrity and schema com-
pliance are primarily established in data transaction validation.
Data transaction validation entails the following: [Verify if
H(dt) = DSA Verify(dt sign, pk p) ∧ verify if schema URI is
valid ∧ verify raw data schema compliance ∧ verify {nonce,
command type} validity ∧ verify producer authentication].

TABLE I
STANDARDIZED DATA SCHEMA

Header
Application DID Hash of the application’s public key
Transaction ID A GUID
Producer address DID URI of the producer
Consumer address DID URI of the consumer or group or self
Command type An enum pointing to one of 4 commands:

Create (insert), Read (query), Update and Delete
Nonce An incremental index that signifies the order

of data transactions from an application
Schema URI URI adopted for the data payload
Timestamp Dispatch timestamp
Hash Signature Signed hash of the full data transaction

Body
Raw Data Actual payload, with the field values encrypted.

Fig. 1. Messages dispatched by applications making it to mempools across
the network. The node designated as leader for a chain, prepares batches
comprising of messages sent by the application that is tied to the chain.

E. Mempool data structure and Entropy Source

Mempool is a data structure (Figure 1) that nodes of the
network use to store unconfirmed transactions that have been
broadcast to the network by applications. Applications send
their transactions to one or more nodes of the network and
nodes in turn disseminate the transactions across the network
use gossip protocol. Network heterogeneities generally result
in the transactions making it to the individual mempools in
different orders. Transactions reside on mempools until they
are batched up for decentralized verification. PoRT protocol
provides Network Discovery Service APIs that lets any entity
(node, application) to query the status of mempools across the
network, to track transaction propagation across mempools and
monitor transaction handling latency.

The standardized schemas for transactions implicitly intro-

duces entropy in every transaction that is sent to the network.
With fields such as timestamp, nonce, transaction ID being
unique and non-repetitive for a given application, a set of
transactions sent by an application act as stores of entropy that
the network can tap into to derive randomness in the system.
The network dissuades duplicate transactions from being sent
by levying penalties on the producers for such actions. The
network checks for duplicate transactions being sent to the
network by periodically comparing the transaction hashes
with that of prior transactions. Producers who are repeatedly
generating non-compliant transactions face rate limits and face
the risk of eventually getting phased out.

Our solution uses batches of transactions as a source of
entropy. While at the outset the above design may appear
to invite grinding attacks, a two-way cryptographic sortition
algorithm (explained subsequently) that PoRT incorporates
will render such attacks unrewarding.

F. Parallel chains and Leader Election Function

PoRT protocol assigns all validated transactions sent to
the network by an application to a single chain that is
solely dedicated to that application. This design helps better
management of application data ranging from faster responses
to data query, efficient audits on transaction handling, until
the eventual chain retirement when the application exits the
platform. The network shall comprise as many independent
chains as there are applications onboarded and hence the name,
parallel chains. When an application ai (with DID: idi) is first
onboarded onto the platform, the following steps are adopted:

• A dedicated chain whose DID is H(idi) is created across
all nodes of the network.

• The application specifies the size of storage required (in
GB), region(s) of storage, billing frequency (monthly, bi-
monthly, semi-annual, annual) and a replication factor
(rf) for its transactions namely, {3, 5, 7}.

A leader is elected for the newly created chain and is
deemed as the only entity who is allowed to propose blocks un-
til a certain inter-epoch block height is reached for that chain,
after which, a new leader is elected and process continues.
An epoch is the time duration between two leader elections
and inter-epoch block height is the number of blocks added
to chain during that epoch. Both the leader election and the
subsequent block height determination use Verifiable Random
Functions. The above design prevents forks and facilitates
instant finality, thereby helping the platform’s throughput.

Whenever a chain cx comes up for election, whose last
block was bx a node Ni with DID idi generates a 256 bit
random number ri as ri =H(DSA Sign(H(bx), ski)) which is
mapped to number between (0, 1), as r̂i = P(ri) (from (14)).
A score wi is computed as the weighted combination of the
node’s stake si and r̂i in the form wi = a∗si+b∗ r̂i, where a
and b are parameters pre-identified by the network, 0 < a < 1,
0 < b < 1 and a + b = 1. The inter-epoch block height is
determined as bhi = Q(ri, 1,max blocks) (from 15), where
max blocks is the network wide parameter that indicates the

maximum number of blocks a leader can propose during one
epoch on a chain.

The 256 bit random number ri is a number that only Ni can
generate and is not decipherable to the rest of the network until
explicitly shared by the node. Ni can prove to the rest of the
network that ri was generated from H(cx) by submitting proof
πi, where πi = DSA Sign(H(idi ⊕ H(cx)), ski), that can be
verified by the network upon unsigning and verifying that the
message signed was derived from H(cx). Ni disseminates its
scores to the network (as illustrated in Table II through gossip
sublayer.

TABLE II
LEADER ELECTION FUNCTION (LEF) REULTS SUBMITTED BY NODE Ni

LEF Header
Signature Signed hash of [Header | Result Body]
Chain ID H(idi): DID of application ai’s chain
From address DID URI of Node Nx

LEF Body
Random number generated ri
Proof DSA Sign(H(idi ⊕ H(ci))
Inter-epoch block height bhi

Stake held si
Cumulative score wi

The node that generated the highest wi will be deemed as
the leader for chain cx, until bhi new blocks were added to
the chain. The index z of the leader is chosen as

z = arg max
i∈(1..N)

a ∗ si + b ∗ r̂i (1)

But the challenge is that in a partially synchronous network,
there is a possibility that some nodes experience longer delays
or even fail completely and as a result identifying the absolute
maximum score as detailed in the equation above may be
infeasible. PoRT protocol adopts a time-out period that is long
enough to accommodate unforeseen network delays, but short
enough to keep the protocol from not stalling, after the passage
of which, nodes that deem that they have the highest overall
scores declare themselves as the leader. If such a declaration
is contested, then the leader is elected with a second round of
consensus gathering.

The above design is verifiable. It gives nodes that held
higher stakes a better chance of winning the leader election
for the given chain, but also introduces uncertainty into leader
election by introducing the weighted random number r̂i in the
equation. At a high level, the leader Nz serves the following
roles for chain cx until bhz blocks are added to chain, namely:

• Aggregating transactions sent by application ax from its
mempool and creating batches of transactions that will
be dispatched for verification

• Identifying subnets using two-way cryptographic sortition
for (i) consensus gathering on the set of valid transactions
(ii) subnet driven state machine replication for on-chain
storage and CRUD friendly local data stores.

G. Two-way Cryptographic Sortition

Cryptographic sortition is a technique used in distributed
systems to randomly select one or more participants from a
group of potential candidates in a way that is both unbiased
and verifiable. Consider the case when a leader node uses a
source of randomness from within the network, and generates
a random number that only they have the capacity to generate
and repurposes the same to identify a subnet to execute one or
more tasks. While it can be proven that the subnet was indeed
created from the given random number, there isn’t a way to
rule out the scenario when the leader employed a grinding
attack in identifying the optimal random number that identifies
their fellow Byzantine nodes for the subnet.

PoRT protocol requires the individual nodes identified to
serve the task(s) to run cryptographic sortition themselves, by
generating their own random number that was derived from
the same source of randomness as that of the leader, and deter-
mining for themselves if they are allowed to serve the assigned
role or otherwise. In this design, the task assigner’s grinding
attack could be rendered ineffective as they cannot predict
the task receiver’s allowed role to serve. The application of
cryptographic sortition both by the task assigner and the task
receiver is what we call as the two-way cryptographic sortition.

H. Batch creation and Verification

Node Nz aggregates the unverified data transactions that
were sent by application ax (whose chain in cx), from its mem-
pool and creates a batch B = {dt1, dt2, ...dtm} comprising an
ordered set of m transactions. Batch creation is governed by
the most impinging of the three criteria namely: (a) maximum
number of data transactions (b) maximum size of the batch
(c) maximum wait-time allowed for data transactions.

Using B as a source of entropy, Nz generates a random
number rz =H(DSA Sign(H(B), skz)) and the VRF proof
πz =DSA Sign(H(B), skz). Next, it identifies indices of p
nodes who shall be the recipients of batch B by invoking
Q(rz , p, n) (from 15), where n corresponds to the number of
nodes in the network. The leader shares (rz , πz) with the rest
of the network to supply evidence that the indices in p were
obtained from rz .

Batch verification primarily entails running data transaction
verification detailed in section III-D1 on the ordered set of
transactions in a batch. It is important to establish that a node
which, as per protocol, was supposed to run batch verification
on a given batch B, performed the job independently and
thoroughly without gathering the verification results through
out-of-band communications with other fellow nodes who
were tasked at verifying the same batch. If such maliciousness
was left unchecked, then the Byzantine nodes may gain unfair
computational advantage over honest nodes. PoRT protocol
adopts a game theoretic construct named batch derivatives to
such freeloader attacks in batch verification.

1) Batch Derivatives: A batch derivative B′ is obtained
by inserting one or more non-conforming transactions called
the control transactions at random indices onto B. A control
transaction is similar to a regular transaction in structure, but is

Fig. 2. Control transactions that resemble data transactions sent by appli-
cations but are designed to fail data transaction verification are inserted at
random indices. The original batch had contained one transaction that would
not have passed verification.

designed to fail verification either due to source authentication
problems or due to data integrity issues. Let C = {c1, c2, ...cy}
be the set of y control transactions. B′ = B ⊙ C is a batch
derivative constructed upon inserting them at random locations
onto B, such that the data transactions in B still appear
in the same relative order. The operator ⊙ signifies control
transaction ingestion. Figure 2 illustrates the creation of B′.

Fig. 3. An illustration of the dynamic subnets for batch verification

2) Two-way Sortition driven Dynamic Subnets: Batch ver-
ification is a multi-stage process, the evolution dynamics
of which is unpredictable. Each node that received a batch
(or a batch derivative) can perform any one of 4 roles in
batch verification namely, (a) Verify the received batch and
provide verification results to the leader (through direct port-
based communication) and the rest of the network (through
gossip) (b) Create a batch derivative and propagate the same
(c) Perform behavioral audits, monitoring the VRF proofs
submitted and the overall adherence to protocol (d) Assume
the role of a by-stander, with no real role to play in verifying
the batch.

Stage #1 of batch verification proceeds as follows: Every
one of the p nodes that leader Nz had identified to take part
in verifying batch B, perform the following tasks:

• Step #1: Each node takes (rz , pz) submitted by Nz and
verifies Nz’s source of randomness and if their node index
was indeed derived from rz as prescribed by the protocol.
If incongruencies are detected, then the node reports the
non-conformity observed.

• Step #2: Nodes in this stage of batch verification assume
the role of batch derivative creation and propagation.
Each node uses batch B as a source of entropy and
generates its own random number r′ (signing with its own
private key) and the associated proof of randomness. It in-
vokes Q(r′, 1, p) and determines the the number of nodes
q that is should dispatch batch derivatives to. Next, it
invokes Q(r′, q, n), identifies the q recipient node indices,
creates different batch derivatives {B′1, B′2, ..., B′q} for
each recipient by inserting a control message at a random
index onto B and dispatches them their respective batch
derivatives.

Stage #2 of batch verification proceeds as follows:

• The recipient nodes in the second stage of batch verifi-
cation, again establish protocol conformity as detailed in
Step #1 above.

• Nodes decipher their respective roles based on the random
number r′ that they generate using the same entropy
source as the leader did, B. Each node invokes P(r′),
which maps r′ to a probability score ŝ. Based on ŝ, the
node identifies the role it is allowed to serve:

0 ≤ ŝ < 0.2 =⇒ dispatch batch derivatives
0.2 ≤ ŝ < 0.6 =⇒ verify batch derivative
0.6 ≤ ŝ ≤ 0.8 =⇒ serve as a bystander
0.8 ≤ ŝ < 1 =⇒ run behavioral audits

• Batch derivative dispatch is detailed in Step #2 above.
• As a batch derivative verifier, nodes run the data trans-

action verification function on every transaction in the
batch derivative and submit their results (Table III to
the network). Nodes deploy compute sharding, thereby
identifying segments of the batch that they will run
batch verifications for. These segment indices are also
determined from the random number that they generated.

• As a bystander, the node serves no role on the received
batch derivative.

• As an audit node, the node corroborates source of ran-
domness, VRF proofs and overall adherence to protocol.

Figure 3 illustrates dynamic subnet creation for batch veri-
fication. Batch verification runs for one additional (and final)
stage. The leader Nz gathers verification results submitted and
gathers the list of verified messages in the batch and creates
a block of verified transactions that shall be added to chain
cx. The above design renders adaptive attacks ineffective and
disincentivizes collusion.

TABLE III
SUMMARY FROM BATCH DERIVATIVE VERIFIER

Result Header
Signature Signed hash of [Header | Result Body]
Batch ID Hash(B): Hash of the original message
From address DID URI of Node Nj

Result Body
Role Batch Verifier
Proof πx < h(B), PvKx >

Assigner DID URI of node Ni that assigned the
batch derivative

Batch derivative B′ : Batch derivative that was verified
Segments reviewed 1, 3, 4
Verification result h(M ′

1), h(M
′
3), h(M

′
4)

Indices of failed messages Indices where message verification failed

Fig. 4. An illustration of blocks stored in epoch based static storage subnets

I. Decentralized Storage: LogChains and Local Data Stores

A block B̂ comprises an ordered set of verified data
transactions. The header of the block comprises a Merkle Root,
derived from a hash tree (Merkle Tree) of all the ordered data
transactions contained in the block. All the transactions in B̂
originated from application ax, are destined to be stored on the
application-specific chain cx, and will have to be replicated a
minimum of rfx times to meet the application’s requirements.
PoRT’s solution towards decentralized storage encompasses
the following:

1) State Machine Replication using Subnets: State Machine
Replication is executed in a subnet context where two subnets
are created, one for chain-based storage (called Log-Chain
store (Figure 4) and the other for a CRUD friendly storage
(called Data store). The subnets are created using two-way
cryptographic sortition with full verifiability. The size of the
Log-Chain store subnet is f+1 (where in a n node network we
have assumed that the number of Byzantines f are such that n
3f + 1). The size of the data store subnet is the same as the
replication factor rfx chosen by the application. The subnet’s
term period is the same as that of the leader for the chain.
After bhz blocks (called inter-epoch block height) have been
added to chain, both the subnets are retired. These are called
epoch based static subnets for decentralized storage, ones that
are commissioned into existence at the beginning of a leader’s

term and decommissioned from chain storage responsibilities
at the end of the leader’s term.

2) Epoch based Static Subnets for Storage: The entropy
contained in the first block B̂ proposed by the leader for
the chain during the epoch is as the source of entropy. Nz

generates a random number r̂z =H(DSA Sign(H(B̂), skz))
and the VRF proof π̂z =DSA Sign(H(B̂), skz). The leader
executes the first step in the two-way cryptographic sortition
step. Next, it identifies the indices of f + 1 + rfx nodes by
invoking Q(r̂z , f + 1 + rfx, n), the first f+1 nodes getting
invited to serve Log-Chain storage for chain cx and the
remaining rfx to serve as the local data store for the same
chain for the epoch. The leader supplies r̂z and π̂z along with
the respective invitations.

The recipient nodes establish protocol conformity (as de-
tailed in Step #1 in the previous subsection) whereby they
establish that there was no malicious behavior or protocol non-
conformity in them getting the invitations to join the epoch
based static subnet. The nodes apply cryptographic sortition
themselves, generate their own random number r̂′z (derived
from B̂). If P(r̂′z) ≥ 0.5, then they accept the invitation. If
P(r̂′z) < 0.5, then the node invokes Q(r̂′z , 2, n) and identifies
new recipient nodes for the invitation. The nodes submit their
random numbers and the corresponding proofs to the leader
and to the rest of the network.

Once the subnets have been formed, every block dispatched
by the leader gets replicated within the LogChain subnet on the
respective chains dedicated for application ax. As a measure
of safety, a Merkle root is derived, whereby the hash of the
blocks added to chain in the current epoch form the leaf nodes
of the Merkle tree, every time a new block is added to chain
and stored on the respective block headers. The transactions
added to the block are simultaneously maintained in local
data store preserving the order of the transactions. A data
transaction of type create results in a new record added to the
local data store. Transactions of type update result in records
getting updated as requested. Transactions of type read cause
no change to the state of the data store and those of type
delete get expunged from the data store. Apart from the two
forms of storage detailed above, a third network wide chain
that leader Nz presides for the epoch duration is maintained
that logs the hash of the chain at the end of every epoch,
yeilding network-wide checkpointing capabilities.

J. Safety, Liveness and Byzantine Defense Mechanisms

Table IV discusses the different Byzantine attack vectors
that PoRT protocol defends against. The carefully laid out
design choices starting from standardized message schema,
network discovery service APIs, batch derivatives, two-way
cryptographic sortition and dynamic subnets contribute to-
wards keeping adaptive attacks generally ineffective. The
safety guarantees of the protocol stem from the no fork parallel
chain construct that has a leader elected for an epoch duration.
Further, dynamic audits and protocol governed checkpointing
in the form of Merkle roots derived for every newly added

block to the respective chains further strengthen the safety
claims of PoRT protocol.

For liveness guarantees, PoRT protocol adopts the following
measures: if a node that was inducted into either the dynamic
subnets for batch verification or the static subnets for decen-
tralized storage crashes or simply becomes unresponsive, to
keep the protocol moving, the node is replaced by its nearest
node (applying XOR distance on the hash of the node’s DID)
in the Kademlia keyspace. The same applies to the leader. If
the leader goes down or becomes unresponsive or displays
malicious behavior, nodes agree to initiate a lighter version
of the view change protocol. As against the three phases of
the protocol (preparation phase, proposal phase and acceptance
phase), just the preparation phase is initiated and nodes need to
come to a consensus that the primary leader is non-reachable.
Then, in deterministic fashion, the node that was closest to
the leader node in the keyspace is appointed to take up the
leader’s responsibilities.

There could be instances when the two-way sortition driven
static subnet creation process could run into far more rounds
than usual, either due to the distribution of random numbers
generated by the potential candidates or due to unfavorable
network conditions. PoRT employs a time-out duration after
which the candidates for unfilled spots in the subnet are iden-
tified using deterministic methods such as keyspace proximity
to leader. These measures are integrated to preserve liveness.

IV. DISCUSSIONS AND FUTURE WORK

Service guarantees required off of decentralized storage
platforms span persistence in data replication to handle in-
stances of high network churn, efficient storage tracking,
generating proofs of data storage and guaranteeing data avail-
ability across time and efficient data retrieval upon query [10].
PoRT protocol is built to deliver on each of the aforementioned
operational requirements for decentralized data storage. De-
veloping a tokenomics model that results in a positive sum
game for every actor in the platform, building TestNet and
running performance benchmarks are the key next steps in
furthering PoRT protocol. We envision the protocol powering
decentralized platforms that will support decentralized data
marketplaces, one that can unlock the immense potentials
hidden in scattered, thus far untapped data streams.

REFERENCES

[1] Yin, Maofan, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta and
Ittai Abraham. “HotStuff: BFT Consensus with Linearity and Respon-
siveness.” Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing (2019): n. pag.

[2] Miller, Andrew K., Yuchong Xia, Kyle Croman, Elaine Shi and Dawn
Xiaodong Song. “The Honey Badger of BFT Protocols.” Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security (2016): n. pag.

[3] Camenisch, Jan, Manu Drijvers and Timo Hanke. “Internet Computer
Consensus.” Proceedings of the 2022 ACM Symposium on Principles
of Distributed Computing (2022): n. pag.

[4] Guo, Bingyong, Zhenliang Lu, Qiang Tang, Jing Xu and Zhenfeng
Zhang. “Dumbo: Faster Asynchronous BFT Protocols.” Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security (2020): n. pag.

TABLE IV
PORT PROTOCOL’S DEFENSE AGAINST ATTACK VECTORS

Attack vector PoRT Defense
Replay attack: Producer burdens Nodes run hash-collision test on
the network with duplicate, periodically, on incoming messages
messages undermining the source of by comparing their hash with
entropy and stressing the network that of mempool messages
Sybil attacks: A malicious node In a stake based network with
operates under multiple identities role fluidity, high collateral needed
simultaneously for Sybil attack is less rewarding
Censorship attack: The leader for Network Discovery Service API’s
the chain withholds messages from let any node run queries off of
certain producers, not including leader’s mempool and detect
them in a batch instances of withheld messages.
Batch incongruence: The leader or Audit nodes check for the hashes
batch derivative propagators may of batch derivatives by expunging
add or remove or shuffle native control messages and trace
messages and delay consensus origins of batch incongruence
Freeloadership: Fellow Byzantine Dynamic subnets introduce role
nodes may establish out-of-band unpredictability rendering such
communication and share answer collusion strategies less viable
keys saving on compute and less effective.
Grinding attacks: A leader could Two-way sortition in
manipulate blocks such that their conjunction with batch derivatives
re-election and the selection of makes network processes less
their fellow Byzantines is favored predictable and hence more secure
Adaptive attacks: Malicious nodes Dynamically evolving subnets
may stage coordinated attacks diminish success of coordinated
(DDoS) on certain nodes affecting attacks as allowed roles to
their ability to serve a role and serve are non-decipherable to
delaying consensus gathering anyone but the nodes themselves
Non-conformity in roles: Malicious Audit nodes periodically verify
nodes may perform operations that role conformity. Non-conforming
are beyond their scope nodes could loose stake.

[5] Rana, Ranvir, Sreeram Kannan, DavidN C. Tse and Pramod Viswanath.
“Free2Shard.” Proceedings of the ACM on Measurement and Analysis
of Computing Systems 6 (2022): 1 - 38.

[6] Ozdayi, Mustafa Safa, Yue Guo and Mahdi Zamani. “Instachain: Break-
ing the Sharding Limits via Adjustable Quorums.” IACR Cryptol. ePrint
Arch. 2022 (2022): 413.

[7] Lua, Eng Keong, Jon A. Crowcroft, Marcelo Rita Pias, Ravi Sharma and
Steven Lim. “A survey and comparison of peer-to-peer overlay network
schemes.” IEEE Communications Surveys & Tutorials 7 (2005): 72-93.

[8] Mao, Yifan, Soubhik Deb, Shaileshh Bojja Venkatakrishnan, Sreeram
Kannan and Kannan Srinivasan. “Perigee: Efficient Peer-to-Peer Net-
work Design for Blockchains.” Proceedings of the 39th Symposium on
Principles of Distributed Computing (2020):

[9] Maymounkov, Petar and David Mazières. “Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric.” International Workshop
on Peer-to-Peer Systems (2002).

[10] @0xPhilillan and @FundamentalLabs, “Decentralized Storage: A Pillar
of Web3”, June 2022.

[11] Protocol Labs, ”Filecoin: A Decentralized Storage Network”, 2017.
[12] Williams, Sam A., Viktor Diordiiev and Lev Berman. “Arweave: A Pro-

tocol for Economically Sustainable Information Permanence.” (2019).
[13] Wilkinson, Shawn. “Storj A Peer-to-Peer Cloud Storage Network.”

(2014).
[14] Vorick, David. “Simple Decentralized Storage.” (2014).

